Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Immunol ; 13: 1061290, 2022.
Article in English | MEDLINE | ID: covidwho-2261362

ABSTRACT

The systemic bio-organization of humans and other mammals is essentially "preprogrammed", and the basic interacting units, the cells, can be crudely mapped into discrete sets of developmental lineages and maturation states. Over several decades, however, and focusing on the immune system, we and others invoked evidence - now overwhelming - suggesting dynamic acquisition of cellular properties and functions, through tuning, re-networking, chromatin remodeling, and adaptive differentiation. The genetically encoded "algorithms" that govern the integration of signals and the computation of new states are not fully understood but are believed to be "smart", designed to enable the cells and the system to discriminate meaningful perturbations from each other and from "noise". Cellular sensory and response properties are shaped in part by recurring temporal patterns, or features, of the signaling environment. We compared this phenomenon to associative brain learning. We proposed that interactive cell learning is subject to selective pressures geared to performance, allowing the response of immune cells to injury or infection to be progressively coordinated with that of other cell types across tissues and organs. This in turn is comparable to supervised brain learning. Guided by feedback from both the tissue itself and the neural system, resident or recruited antigen-specific and innate immune cells can eradicate a pathogen while simultaneously sustaining functional homeostasis. As informative memories of immune responses are imprinted both systemically and within the targeted tissues, it is desirable to enhance tissue preparedness by incorporating attenuated-pathogen vaccines and informed choice of tissue-centered immunomodulators in vaccination schemes. Fortunately, much of the "training" that a living system requires to survive and function in the face of disturbances from outside or within is already incorporated into its design, so it does not need to deep-learn how to face a new challenge each time from scratch. Instead, the system learns from experience how to efficiently select a built-in strategy, or a combination of those, and can then use tuning to refine its organization and responses. Efforts to identify and therapeutically augment such strategies can take advantage of existing integrative modeling approaches. One recently explored strategy is boosting the flux of uninfected cells into and throughout an infected tissue to rinse and replace the infected cells.


Subject(s)
Systems Biology , Vaccines , Animals , Humans , Immune System/physiology , Signal Transduction , Homeostasis , Mammals
2.
Mathematics ; 10(17):3154, 2022.
Article in English | MDPI | ID: covidwho-2010199

ABSTRACT

A calibrated mathematical model of antiviral immune response to SARS-CoV-2 infection is developed. The model considers the innate and antigen-specific responses to SARS-CoV-2 infection. Recently published data sets from human challenge studies with SARS-CoV-2 were used for parameter evaluation. The calibration of the mathematical model of SARS-CoV-2 infection is based on combining the parameter guesses from our earlier study of influenza A virus infection, some recent quantitative models of SARS-CoV-2 infection and clinical data-based parameter estimation of a subset of the model parameters. Hence, the calibrated mathematical model represents a theoretical exploration type of study, i.e., 'in silico patient' with mild-to-moderate severity phenotype, rather than a completely validated quantitative model of COVID-19 with respect to all its state-space variables. Understanding the regulation of multiple intertwined reaction components of the immune system is necessary for linking the kinetics of immune responses with the clinical phenotypes of COVID-19. Consideration of multiple immune reaction components in a single calibrated mathematical model allowed us to address some fundamental issues related to the pathogenesis of COVID-19, i.e., the sensitivity of the peak viral load to the parameters characterizing the antiviral specific response components, the kinetic coordination of the individual innate and adaptive immune responses, and the factors favoring a prolonged viral persistence. The model provides a tool for predicting the infectivity of patients, i.e., the amount of virus which is transmitted via droplets from the person infected with SARS-CoV-2, depending on the time of infection. The thresholds for variations of the innate and adaptive response parameters which lead to a prolonged persistence of SARS-CoV-2 due to the loss of a kinetic response synchrony/coordination between them were identified.

3.
Viruses ; 14(2)2022 02 15.
Article in English | MEDLINE | ID: covidwho-1687060

ABSTRACT

Mathematical modelling of infection processes in cells is of fundamental interest. It helps to understand the SARS-CoV-2 dynamics in detail and can be useful to define the vulnerability steps targeted by antiviral treatments. We previously developed a deterministic mathematical model of the SARS-CoV-2 life cycle in a single cell. Despite answering many questions, it certainly cannot accurately account for the stochastic nature of an infection process caused by natural fluctuation in reaction kinetics and the small abundance of participating components in a single cell. In the present work, this deterministic model is transformed into a stochastic one based on a Markov Chain Monte Carlo (MCMC) method. This model is employed to compute statistical characteristics of the SARS-CoV-2 life cycle including the probability for a non-degenerate infection process. Varying parameters of the model enables us to unveil the inhibitory effects of IFN and the effects of the ACE2 binding affinity. The simulation results show that the type I IFN response has a very strong effect on inhibition of the total viral progeny whereas the effect of a 10-fold variation of the binding rate to ACE2 turns out to be negligible for the probability of infection and viral production.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Interferon Type I/immunology , Models, Theoretical , SARS-CoV-2/immunology , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/immunology , Computer Simulation , Humans , Kinetics , Life Cycle Stages , Markov Chains , Protein Binding , SARS-CoV-2/growth & development , Stochastic Processes
4.
Viruses ; 13(9)2021 08 31.
Article in English | MEDLINE | ID: covidwho-1390785

ABSTRACT

SARS-CoV-2 infection represents a global threat to human health. Various approaches were employed to reveal the pathogenetic mechanisms of COVID-19. Mathematical and computational modelling is a powerful tool to describe and analyze the infection dynamics in relation to a plethora of processes contributing to the observed disease phenotypes. In our study here, we formulate and calibrate a deterministic model of the SARS-CoV-2 life cycle. It provides a kinetic description of the major replication stages of SARS-CoV-2. Sensitivity analysis of the net viral progeny with respect to model parameters enables the identification of the life cycle stages that have the strongest impact on viral replication. These three most influential parameters are (i) degradation rate of positive sense vRNAs in cytoplasm (negative effect), (ii) threshold number of non-structural proteins enhancing vRNA transcription (negative effect), and (iii) translation rate of non-structural proteins (positive effect). The results of our analysis could be used for guiding the search for antiviral drug targets to combat SARS-CoV-2 infection.


Subject(s)
COVID-19/virology , Host-Pathogen Interactions , Models, Biological , SARS-CoV-2/physiology , Virus Replication , Algorithms , Antiviral Agents/pharmacology , Humans , Life Cycle Stages , Models, Theoretical , Reproducibility of Results , SARS-CoV-2/drug effects , Software
SELECTION OF CITATIONS
SEARCH DETAIL